Search results for "optical bistability"
showing 10 items of 24 documents
Crystalline-state reaction with allosteric effect in spin-crossover, interpenetrated networks with magnetic and optical bistability.
2003
A net change: A fully reversible ligand substitution involving coordination/ uncoordination of gaseous water and pyrimidine induces the repetitive allosteric transformation of three interpenetrated nets into a single three-dimensional net. The transformation does not affect the crystallinity of the sample but alters significantly the spin-crossover transition; the compound shows magnetic and chromatic bistability (see picture).
Coexistence of single-mode and multi-longitudinal mode emission in the ring laser model
2005
A homogeneously broadened unidirectonal ring laser can emit in several longitudinal modes for large enough pump and cavity length because of Rabi splitting induced gain. This is the so called Risken-Nummedal-Graham-Haken (RNGH) instability. We investigate numerically the properties of the multi-mode solution. We show that this solution can coexist with the single-mode one, and its stability domain can extend to pump values smaller than the critical pump of the RNGH instability. Morevoer, we show that the multi-mode solution for large pump values is affected by two different instabilities: a pitchfork bifurcation, which preserves phase-locking, and a Hopf bifurcation, which destroys it.
A new monomeric interpretation of intrinsic optical bistability observed in Yb3+-doped bromide materials
2003
We present a mechanism able to show intrinsic bistable behaviour involving single Yb3+ ions embedded into bromide lattices, in which intrinsic optical bistability (IOB) has been observed. The mechanism is based on the experimentally found coupling between the Yb3+ ion and the totally symmetric local mode of vibration of the [YbBr6]3- coordination unit. The model reproduces the IOB observed in CsCdBr3:1% Yb3+ and allows to understand the experimentally found presence of the phenomenon in the other bromides, but its absence in Cs3Lu2Cl9:Yb3+.
Addressing optical pixel bits in a slab of dense optical material via intrinsic optical bistability
2007
It is well known that dense materials with local-field effects can show "intrinsic" optical bistability when they are directly irradiated by a light beam. This has been shown theoretically in a number of works and also experimentally in several cases, in gas media and also in doped solid-state materials where nonlinearities based on standard local-field effects can be reinforced with other ion interaction effects. Although from the point of view of applications nonlinearities stronger than those found so far would be desirable, the fact that no optical resonator is needed to achieve bistability makes these materials potentially interesting for applications in optical information storage and…
Four-wave mixing and vacuum squeezing in polariton microcavities
2017
In a recent paper [1] it has been shown how a bichromatic fast driving of optomechanical (optical domain) and superconducting circuit systems (microwave domain), operating in a limit where they present a non-linear Kerr-type interaction, can give rise to very strong vacuum squeezing. The driving with two close frequencies of a Kerr cavity changes the usual bistability bifurcation behaviour that takes place under monochromatic driving, into a degenerate four-wave mixing bifurcation, where a phase-bistable component starts oscillating spontaneously at a frequency that lies halfway between the two driving frequencies [2]. This resembles the physics of the optical parametric oscillator threshol…
Observation of a nonlinear microfiber resonator
2008
Measurements of the intensity transfer function of a silica microfiber resonator are shown to follow a wide variety of hysteresis cycles, depending on the cavity detuning and the scanning frequency of the range of input powers. We attribute these observations to a nonlinear phase shift of thermal origin and provide a simple model that reproduces well our measurements. The response time is found to be around 0.6 ms.
Non-Linear Optical Properties of Hybridized Surface Plasmon Polaritonic Crystals: Observation of Optical Bistability
2007
Summary form only given. The use of surface plasmons (SP) is recognized as being central to the development of nanoscale assemblies of photonic and opto-electronic devices. This is motivated by the spatially confined nature of these electromagnetic waves as well as their resonant behavior. Amongst plasmonic supporting structures, surface plasmonic crystals (SPCs) draw particular interest because of their tailored optical properties. A geometry common to SPCs consists in a periodic arrangement of holes or slits in a metal film. Their complex optical response is then governed by coherent interactions between Bloch modes at the film's interfaces and modes supported by the holes or slits. These…
Photophysical Properties of Discotic Dibenzopyrenes
1997
Abstract The photophysical properties of three discogenic dibenzopyrenes substituted by eight pentyloxy (O5DPB), heptyloxy (O7DBPP) or decyloxy (O10DBP) side chains are studied in solution and thin films. It is shown that the absorption and fluorescence spectra of the columnar mesophases are clearly distinguishable from those of the corresponding crystalline phases, allowing the study of phase transitions. Thus, it is found that the shorter the lateral chain length, the slower the crystallisation process. For O5DBP, the supercooled mesophase is stable over a period of at least one year; it crystallises after cooling below the glassy transition. Such a behaviour gives rise to temperature con…
Experimental demonstration of bistable phase locking in a photorefractive oscillator
2012
We report experimental evidence of bistable phase locking in nonlinear optics, in particular, in a photorefractive oscillator emitting in few transverse modes. Bistable phase locking is a recently proposed method for converting a laserlike system, which is phase invariant, into a phase-bistable one by injecting a suitable spatially modulated monochromatic beam, resonant with the laser emission, into the optical cavity. We experimentally demonstrate that the emission on the fundamental TEM00 mode becomes phase bistable by injection of a beam with the shape of the TEM10 mode with appropriate frequency, in accordance with recent theoretical predictions [K. Staliunas et al., Phys. Rev. A 80, 02…
Optical Bistability and Switching in Oppositely Directed Coupler
2016
We report the optical bistability in two core oppositely directed coupler with negative index material channel. Using Langrangian variational method and Jacobi elliptic functions, we construct the solutions of the coupled nonlinear Schrodinger equations. The bistability arises due to the effective feedback mechanism as a result of opposite directionality of the phase velocity and energy flow in the negative index material channel. We report the various ways to control and manipulate the bistability threshold and hysteresis loop, which could be useful in the design and development of fast and low-threshold optical switches.